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Abstract

Deep learning (DL) models have the potential to ac-
curately predict atrial fibrillation (AF) ablation outcomes
based on patient-specific anatomical and physiological
features, including fibrotic remodelling. However, it is
challenging to collect enough data for training deep learn-
ing models using clinical data alone. With this motivation,
we developed a method to artificially generate additional
datasets. In this study, we aim to generate artificial atrial
fibrosis distributions via diffusion models to increase our
training dataset size by imitating independent personalized
AF episodes.

We validated the proposed method by applying a DL
binary classifier, which predicts whether AF is sustained
post-PVI ablation. Fibrosis and dominant frequency maps
extracted from pre-ablation AF simulations were used as
inputs to predict AF sustainability after PVI. We compared
training a binary classifier on generated fibrosis data to
training it on 100 real fibrosis distributions on the same
LA anatomy. For the baseline classifier trained and tested
on real fibrosis data, the ROC-AUC score was 0.96. In
contrast, training the classifier using generated cases, and
testing on the real fibrosis data, resulted in an ROC-AUC
score of 0.92. The results indicate that the artificial fibro-
sis distributions correspond well with the real ones and can
be used for dataset expansion. Code will be available at
https://github.com/pcmlab/cinc23_qmul.

1. Introduction

Atrial Fibrillation (AF) remains the most common heart
rhythm disorder and is associated with an increased risk of
stroke, with currently estimated prevalence of AF in adults
between 2% and 4% [1]. The surgical treatment of AF is
ablation, with the main goal being to eliminate the patho-
logical sources of AF signals. Conventional AF ablation
therapy is pulmonary vein isolation (PVI) which allows to
blockage signals from of the most frequent source of AF
paroxysms [2].

Biophysical simulations of AF, when combined with
Deep Learning (DL) algorithms, can create patient-specific
models for optimizing the strategy of ablation or predicting

the success rate of ablation on clinical timescales. These
biophysical simulations utilize the cardiac monodomain
equation for wavefront propagation coupled to a human
atrial cell model, solved on atrial anatomies (meshes con-
structed from imaging data) with different fibre and fibro-
sis distributions. It has been shown that atrial fibrosis is
correlated with the conduction velocity of electrical prop-
agation and may be used as a prediction metric for ablation
success rate [3], indicating that fibrosis plays an important
role in AF maintenance.

There are several ways to analyze the resulting biophys-
ical simulations – from testing the different ablation strate-
gies or patient-specific effects of AF drugs to predicting
the long-term freedom rate from AF. To run this analysis,
one can feed the anatomical and physiological features of
AF simulation to a DL prediction pipeline. However, data
requirements for training a robust pipeline are high.

One of the possible solutions to address this issue of
large data requirements is to create realistic artificial repre-
sentations of atrial fibrosis that can capture patient variabil-
ity in electrophysiological features for successful biophys-
ical simulations. Generating these fibrosis distributions at
scale enables large in-silico trials for evaluating existing
and novel treatment approaches.

2. Methods

2.1. Biophysical atrial simulations

We used 100 patient-specific atrial models constructed
from late gadolinium enhancement (LGE) MRI data from
our previous study [4]. Briefly, personalized models were
constructed for 100 atrial fibrillation (43 paroxysmal, 41
persistent, 16 long-standing persistent) patients, undergo-
ing first ablation. The left atrial surface meshes were ini-
tially derived from MRI scans with consecutive manual
segmentation of the atrial blood pools and reconstruction
of an atrial surface mesh.

A 2D representation of the 3D atrial surface, universal
atrial coordinates (UAC), is calculated for each mesh by
solving a Laplace equation with boundary conditions; the
full pipeline is described in [5]. UAC are necessary for
registering scalar and vector features, such as fiber and fi-
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brosis distributions, across different anatomies. We also
separate the atrial tissue into different regions with varied
electrophysiology parameters using the calculated UAC.

To create a bi-layer model, the endocardial mesh of the
Left Atrium (LA) was duplicated for each case and was
projected at the same distance from the original mesh for
each node to construct the epicardial surface mesh, and
the corresponding nodes were connected through line el-
ements. A fiber field was added to the endocardial and
epicardial surfaces of each mesh from a human diffusion
tensor MRI dataset [6].

Original fibrosis distributions (n=100) were obtained
from late-gadolinium enhancement (LGE) MRI, as de-
scribed in [4]. Next, LGE MRI distributions, measured in
image intensity ratio (IIR) relative to the blood pool inten-
sity, were assigned to the bi-layer models through UAC
registration. Based on these distributions the ionic and
conductivity properties of regions with values above the
threshold were changed to represent the fibrotic remod-
elling, following our previous studies [7].

Finally, the differential equation is numerically solved
based on the conduction properties of different atrial re-
gions and the fibrosis distributions. We utilised the Courte-
manche human atrial model [8] and monodomain tis-
sue model for AF simulation using openCARP solver.
AF was initiated with conditions corresponding to four
Archimedean spiral waves on the atrial surface, with more
details at [9]. We also simulate PVI ablation for AF
episodes by adding two non-conducting rings around the
left and right pulmonary vein antra [4].

The simulated AF episodes (15-sec duration) were pro-
cessed by normalization and applying the Fourier transfor-
mation to create Dominant Frequency maps. These maps
show the frequency of the highest peak of the Fourier spec-
trum (the most common frequency in signal) and therefore
may indicate the possible source of the wavefront. 3D co-
ordinates of mesh nodes were converted to 2D coordinates
based on the UAC to create a 48 by 48 pixels map which
can be used as input to the Machine Learning prediction
pipeline.

2.2. Generative models

Diffusion models have been successful in various com-
puter vision and augmented reality applications. The core
mechanism of these models is the generation of artificial
images by restoring them from noise distributions. Gaus-
sian noise is gradually added to the training images, and
the model learns to reverse this process [10].

For the generation of artificial fibrosis distributions,
we used the Denoising Diffusion Probabilistic Model
(DDPM) from MONAI Generative Models software [11].
It was trained on 100 original fibrosis distributions in 2D
in the format of 48 by 48 pixel maps. The training was

conducted on NVIDIA GeForce RTX 3080 video card for
500 epochs using Mean Squared Error loss and Adam opti-
mizer with a learning rate of 2.5×10−5. As a backbone ar-
chitecture, we used the default model - the original DDPM
scheduler containing 1000 timesteps in its Markov chain,
and a 2D U-Net with attention mechanisms in the 2nd and
3rd levels, each with 1 attention head.

2.3. Deep Learning Predictions

The Deep Learning pipeline was used to predict AF sus-
tainability after PVI based on features from pre-ablation
AF simulations. The area under the curve for the receiver
operating characteristic (ROC-AUC) was used to assess
the prediction ability of the Deep Learning model across
the testing dataset. The ground truth for the pipeline (labels
of AF sustainability) was assessed manually by reviewing
the movie of the AF simulation using meshalyzer software.

The pipeline structure is shown in Figure 1. There are
two heads for anatomical (2D fibrosis map) and physiolog-
ical (Dominant Frequency map) inputs. Each head consists
of 3 convolutional blocks with the following ReLU activa-
tion function and dropout layer. The convolution with 3
by 3 kernel, ReLU activation function, batch normaliza-
tion and max pooling construct the convolution block. The
outputs of both branches were fed to the fully connected
layer followed by sigmoid activation.

Figure 1. Deep learning pipeline for AF sustainability
prediction (probability, p) after PVI ablation based on pre-
ablation fibrosis and DF maps. PVI - Pulmonary Vein Iso-
lation, DF - Dominant Frequency.

The Binary Cross Entropy loss function and Adam op-
timiser were used for training. Each dataset was separated
into training and testing sets with a ratio of 90:10. The
result of the pipeline is the prediction of whether the AF
simulation is sustained (the probability between 0 and 1).
Our motivation to choose this architecture was based on
the ability of convolution layers to extract meaningful fea-
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tures from images. We did not use a more complicated
convolution network because of the small size of the train-
ing dataset and the risk of overfitting.

We also utilize this pipeline to check if the AF simula-
tions, run on atrial meshes with artificial fibrosis distribu-
tions, are relevant to ones based on real distributions. For
this goal, we trained the model on artificial cases and tested
it on real ones. Then we compared the ROC-AUC with
ROC-AUCs of training and testing within one domain (AF
episodes of either real or artificial fibrosis distributions).

3. Results and Discussion

We generated 100 artificial fibrosis distributions; 5 ran-
dom examples of them are shown on the bottom row in
Figure 2. Firstly, the artificial cases were compared with
the real distributions to find possible differences. The
mean intensity of real distributions is 1.09 versus 1.28 IIR
for artificial distributions.

Figure 2. Randomly selected examples of fibrosis distri-
butions in 2D - real at the top and artificial at the bottom.

Secondly, we performed AF simulations with artificial
distributions. The number of sustained AF episodes ( 5
seconds) is 33 (out of 100) cases in the artificial dataset.
For comparison, while running simulations with real dis-
tributions, 40 cases are sustained AF episodes.

Thirdly, we checked if we can successfully predict the
AF sustainability based on anatomical and physiological
features of AF simulations. Initially, we performed the ex-
periments separately on both datasets.

We trained two models independently on the training
sets of real and artificial datasets and tested on the test-
ing sets without merging them. The resulting ROC-AUC
metrics are shown in Table 1; they are close or equal to 1
for both datasets. It is likely that the ROC-AUC of 1 for
the artificial dataset indicates the relative similarity of ar-
tificial cases meaning that it is easy for the Deep Learning
model to learn the correct answer for this dataset.

Finally, we tested if we could use artificial distributions
for the expansion of the dataset with real fibrosis distribu-
tions. The model was trained on 100 artificial distributions
and tested on 100 real distributions to predict AF sustain-
ability. The ROC-AUC was 0.92, which shows the high

Figure 3. The top row shows fibrosis distributions in IIR
(LGE-MRI image intensity ratio); the bottom row - exam-
ple snapshots of AF simulations using these distributions.
A real fibrosis distribution is shown on the left column and
an artificially generated one on the right.

level of similarity between the two domains and the possi-
bility of artificial expansion of the in-silico datasets.

We also checked if there is a real need for Diffusion
models in obtaining artificial fibrosis distributions. To do
this, 100 random Gaussian noise distributions were gener-
ated by Pytorch and used as fibrosis distributions for AF
simulations as described in Section 2.1. We found that the
percentage of AF sustained cases is higher (45 %) than
for AF cases of real fibrosis distributions (33 %) and those
of artificially generated by the Diffusion model (40 %).
However, testing on real cases (n=100) after training on
random ones shows that ROC-AUC achieves 0.89 in com-
parison with training on artificially generated cases (ROC-
AUC = 0.92). This indicates the advantage of the devel-
oped methodology for generating artificial fibrosis distri-
butions.

4. Conclusion

This study is the first to our knowledge to generate ar-
tificial fibrosis distributions for AF computer simulations.
This approach may be used to generate large virtual pop-
ulations for in-silico trials of different ablation therapies,
and for improving patient-specific ablation prediction us-
ing digital twins.
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Fibrosis distributions
Train on

real
Train on
artificial

Train on
random

Percentage of
sustained
post-PVI

AF episodes

40 33 45

ROC-AUC if
train and test
on the same

domain

0.96 1 1

ROC-AUC if
test on real

cases
0.96 0.92 0.89

Table 1. The comparison between AF simulations after
PVI ablation based on different domains of fibrosis dis-
tributions - real, artificial and random (Gaussian noise).
ROC-AUC shows the performance of prediction of AF
post-PVI sustainability by DL pipeline. ROC-AUC - the
area under the curve for the receiver operating characteris-
tic.
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